
 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 432

July
2012

A Complete Metrics Based View to

Estimate Software Quality in

Component based System

Vanish

Mr. Manmohan Sharma

__

Abstract:

Most of the applications in today’s IT industry are developed with the help of existing codes,

libraries, design, open source etc. As the code is accessed in a program it is represented as the

software component. Code is a ready to use component in programming. Developing software

with the help of existing component or code is called software reusability. These components can

be code, architecture, documents, designs etc. While using these components the main question

arises whether to use such components is worth full or not which means reusing these components

increases or decreases the quality of the software. In this proposed work i have made an attempt

to answer this question. In this work i am presenting a set of software metrics that will check the

interconnection between the software components and the application. How strong this relation

defines the software quality after using this software component. For this to be happen work i

have taken four components having interconnection between them. After applying software

metrics on them i will be able to suggest which component will increase the quality of the

software produced. The overall metrics will return the final result in terms of the dependencies of

the component with application. No doubt many techniques have been developed to estimate the

quality of the software but my approach will estimate the quality of software with the help of a

concept called Software Reusability. As I earlier said software reuse is the process of developing

software systems using existing software assets. Good software reuse always results in the

increase of productivity, quality, reliability and the decrease of costs as well as implementation

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 433

July
2012

time. No doubt initial investment is definitely required to start some software reuse process but

that investment will automatically recover itself in few reuses. The development of a software

reuse process always improves the quality of software after every reuse, minimizing the amount

of development work and time required for future projects and ultimately reducing the risk of new

projects that are based on repository knowledge. Reuse eventually saves our time and money and

will ultimately lead to a more stable and reliable product. The benefits from reusing abstract

product of development process such as specifications and designs may be greater than those

from reusing code components. On the other hand it will be more convenient for developers if

they already know the complexity of reused components. This will not only reduce the efforts

required but also we can use our available resources in some other tasks.

Keywords: Components, Reusability, Quality, Estimation, Metrics, Complexity.

Introduction: Software engineering is very vast term as we can imagine but software reusability

has completely changed the view of creating the software. Reusability not only makes the

software development easier but also makes development process transparent. For making

reusability happen we need software components. These components may be code, whole module

etc. With the addition of these components whole life cycle of software development has

changed. Now it needs to test and estimate each software components individually and if these

components are already in running mode in some other application then we need to just perform

the interfacing of the current application with these software components. Software

modularization deals with the interfacing between different modules. These modules can be

integrated directly or indirectly. The numbers of levels between two modules also affect its

quality. Here we introduce the concept of software metrics. This metrics firstly measures the

interaction between these components. Then it will measure the quality of the software which

further depends on the quality of the components used.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 434

July
2012

A) Software components:

Some basic properties of the software components are:

(i) A software component can be a code block, module, function, class, control or the project

or software itself.

(ii) The software component can be language dependent or language impendent.

(iii) A software component can be end product or it can be extendable.

(iv) A software component is the unit of interfacing that conceptually specifies it’s internal and

the external interfacing with main application.

(v) A software component can also be a deliverable software object.

(vi) A software component can be online or the offline product or code.

As we can see a software component is not an individual term it is the basic concept that gives the

software reusability in some way. Any kind of internal or interfacing in software in the form of

individual component is represented in the form of software components. Each of the software

language defines most of software components in different way.

 Figure 1: Software Components

Software

Components

Java

Beans

ActiveX

COM

Objects

VBX Window

Services

Corba

Components

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 435

July
2012

b) Component Based Software Engineering:

With the increased use of business software there is requirement of more scientific ways to

estimate the software quality and its complexity. Because of this there was the requirement of

some improvement in the software development process. It is one of the reason that the

developers think in a new direction to estimate the software quality. There was requirement of

such an approach that was structured and rule based. Such an approach should be compatible to

most of the available software and the software development processes. This gives the

development of a new concept called CBSD i.e. component based software development.

Component-based software development (CBSD) is an approach in which systems are built from

well -defined, independently produced pieces, known as components. Some definitions emphasize

that components are conceptually coherent packages of useful behavior, while some others state

that components are physical, deployable units of software which are executed within a well

defined environment.

C). Software metrics:

As the number of components available on the market increases it is becoming more important to

utilize software metrics to quantify the various characteristics of components and their usage.

Software metrics are used to measure the software quality as well as performance characteristics

quantitatively which are encountered during the process of software development. These can

serve as measures of software products for the purpose of comparison, cost estimation, fault

prediction and forecasting. Metrics can be helpful in guiding decisions throughout the life cycle

and determines whether the software quality improvement initiatives are financially worthwhile

or not. A lot of research has been conducted on software metrics and their applications. Most of

the metrics proposed in literature are based on the source code of the application. However these

metrics cannot be applied on components and component-based systems as the source code of the

components is not available to application developers. Therefore a different set of metrics is

required to measure various aspects for component-based systems and their quality issues.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 436

July
2012

D) Software Reusability

Software reuse is a step by step process of implementing and updating software systems using

existing software components. A good software reuse process results in the increase of

productivity, quality, reliability and the decrease of costs as well implementation time. An initial

investment is required to start a software reuse process but that investment pays for itself in a few

reuses. In short the development of a reuse process and repository produces a base of knowledge

that improves in quality after every reuse, minimizing the amount of development work required

for future projects and ultimately reducing the risk of new projects that are based on repository

knowledge.

Why Reuse?

Reuse has proved to offer many rewards. When we reuse code, components and other artifacts our

goal is to:

 Reduce time to market.

 Reduce the cost of developing the product.

 Improve the productivity of the development teams.

 Improve the predictability of the development process.

Software development with reuse:

Reuse in software development is an attempt which tries to maximize the reuse of existing

software components and benefit of this approach is reduction of overall development costs of the

software [3]. Cost reduction is one of the potential benefits of the software reuse. Systematic

reuse in the development offers further advantages:

 System reliability is increased.

 Reused components in the working systems should be more reliable than the new

components. These components have been tested in the variety of the operational systems

environment and have been exposed to many realistic operating conditions.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 437

July
2012

 Overall process risk is reduced.

 If we use a function which already exists there is less uncertainty in the cost of reusing

that component than in the costs of development. In project management this is important

factor as it decreases the uncertainty in the project cost elimination. If relatively large

components such as sub systems are reused then this becomes true.

 Effective use defined by specialists.

Application specialists doing the same work on different project environment instead these

specialists can develop reusable components which encapsulate their knowledge.

 Organizational standards can be embodied in reusable components.

 We can reuse some standards such as user interface standard which can be implemented as

a set of standard components.

Literature Survey:

Software reuse enables the developers to leverage past accomplishments and facilitates significant

improvements in software productivity and quality. The contribution of this paper is a

recommended process model for the implementation of software reuse effectively. A critical

problem in today’s practice of software reuse is the lack of a standard process model which

describes the necessary details to support reuses based software development and evolution [1].

Software has been reused in applications development ever since programming started. The reuse

practices used to be ad hoc and the potential benefits of reuse have never been fully realized.

However, most of the available software development methodologies do not explicitly identify

reuse activities. The applications of reusable software components of the software engineering

institute is developing a reuse based software development methodology , the current direction

and the progress of this methodology works are discussed in this paper. The methodology is based

on the life cycle model of DoD-STD-2167A with refinement of each and every phase to identify

reuse activities[2] The reuse activities which are common through the life cycle phases are

identified as: 1- Study the problem and available solutions to that problem and develop a reuse

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 438

July
2012

plan or strategy 2- Identify the solution structure for the problem following the reuse strategy 3-

Reconfigure the solution structure to enhance reuse at the next phases 4- Acquire instantiating

and modifying existing reusable components 5- Integrate the reused as well as newly developed

components into the products for the phases 6) Evaluate the products. These activities act as the

base model for defining of the specific activities at every phase of the life cycle. This

methodology has more focus on identification and application of reusable resources than on

construction of reusable resources and some enhancements in the construction aspect might be

necessary to make it more complete [2]. The component reuse and maintenance requires the

development as well as utilization of specialized tools. In order to be correctly used any software

components needs to be properly understood engineered and catalogued. Various kinds of

information about components had to be organized, developed and retrieved during the whole

process. In this paper we will discuss a methodology which is based on information retrieval

techniques for automating existing software components. We describe an experiment for

utilization of the system with prototype examples of reuse, maintenance and finally we evaluate

the result of the experimental phase [3]. Software reuse enables the developers to cover past

accomplishments and facilitates significant improvements in the software productivity and

quality. Software reuse enhance the improvements in productivity by avoiding redevelopment of

components and improvements in quality by incorporating those components whose reliability

has already been checked and established. This study addresses a research issue that underlies

software reuse:-what factors characterizes the successful software reuse in large-scale systems?

The research attempt is to investigate, analyze and evaluate the software reuse empirically by

analyzing software repositories from a NASA software development environment that actively

reuses software components [5]. This software environment successfully follows the principles of

reuse based software development to have an average reuse of 32% per project which is an

average amount of software either reused or modified from the previous software. We identify

two factors that characterize successful reuse based software development of large-scale systems:

module design factors and module implementation factors. The modules reused without revision

had the minimum faults per source line and lowest fault correction effort. In conclusion we

outline the future research direction that build on these software reuse ideas as well as strategies

[5]. Approaches to understand software development process and improving software

productivity also include using and designing automated software development tools, study of

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 439

July
2012

human factors in software development, applying software productivity measurement as well as

evaluation techniques. A meta-system environment that allows users to define functionalities,

structures, and constraints of various software components is discussed. Information of these

components is used by the knowledge based system to support the selection, configuration and

distribution of reusable components [6]. One of the primary obstacle to the reuse of independently

developed binary components on the industry level lies in the existing component technology that

do not clearly separates the component assembly from the component development. To handle

this problem a new system was proposed a component assembly method and a runtime

framework which together amounts to what we call as Active Binding Technology. This

component model mentions how to make software components as pure parts and the assembly

method express the message flow between these components in a model while the runtime

framework performs dependency injection to make the components interaction with each other

observing type safety constraints. An empirical study of the methods for representing reusable

software components is described. 35 subjects searched for reusable components in the database

of UNIX tools using 4 different representation methods:1- attribute-value 2- enumerated 3-

faceted 4- keyword. The study used Proteus, a reuse library system which supports multiple

representations of methods. Searching effectiveness was measured with the help of recall,

precision and overlap. Search time for the four methods was also compared. Subjects rated the

methods in terms of preference and helpful in understanding the components. Some principles for

constructing reuse libraries based on the results of this study have been discussed.

According to my literature survey i came to know that no work has been done precisely on the

topic which i am doing. But still lots of reviews has been given by different personalities on the

topic (and related to) software reuse. I believe that in present scenario of software development

there is huge need to calculate the complexity of components which are going to be reused so that

developers will not face any problem while reusing any component. Since reuse components are

already being tested so it will not only increase the quality of the software but also enhance as

well encourages the software reusability which is the final goal of the proposed paper.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 440

July
2012

Methodology:

I will propose an interface complexity metric for software reused components which is based on

their complexity involved. Based on properties of reused components, some values or degrees

will be assigned to them and these values or degrees will be used to measure the complexity of

target software. So, in the end these values or their sum will give the overall reusability interface

complexity of the software. No precise criteria exists which measure the reusability with respect

to quality characteristics of the components used like complexity, interfacing, maintainability etc.

Components of the software are the main objects which performs reusability. Almost all

applications are component based systems. For example, a car is made up of thousands of parts

(or components) and these parts have come from a multitude of different places. The car engine

might have been built in Germany, the tyres in France, the exhaust in the USA, the upholstery in

Italy, etc... And all this assembled in a factory in the UK. Most of the work done while proposing

the metrics of the characteristics are either theoretically done without any validated methodology

or only considers source code as the main component. My work will find the degree of reusability

on the basis of their components and their complexity. My study will use properties and methods

of the components with its interfacing with the system. So, it will estimate the software quality in

terms of software component reusability.

Implementation Design:

My proposed work is to estimate software quality with respect to software reusability. Now to

estimate this in terms of software components we need to estimate some factors such as

1. Firstly we have to find all kinds of software components (as suggested in

introduction) or the codes which are responsible for software reusability. We are

representing all kinds of code and the components as a single unit called components.

2. Secondly we have to find that which kind of reusability it is, which means in what

ways the component becomes the part of the main application. For example: - Is it

being used as a parent class or is used as the composition etc.

3. Now we have to find the interface metrics of the component with the main program

and assign some values to the components according to their complexity.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 441

July
2012

4. We have to estimate the relationship between different components. It is possible that

different components may have some bonding between themselves. With the help of

these relationships and the values of the components (as suggested in point no. 3) we

will estimate the quality of the software with respect to software reusability.

Proposed work:

My emphasis is on evaluation of various functional and non-functional aspects of components of

software development as well as the effect of components on the system. These aspects include

complexity, reusability, maintainability, customizability etc. So my objective is to design a

methodology to estimate the quality of software using the complexity of the reused components. I

want to propose a system which estimates the quality of software with respect to the reusability of

components. My focus is on present technologies but present methodologies are not enough so

this is my small approach to improve software reusability by removing the drawbacks and making

some enhancements. Software reusability is one of the important aspects of software engineering

and software development. With the evolution of modular programming the software reuse is

increased very fast. The component based software programming is the most promising

technology for software reusability. The work is about to estimate the software reusability in a

software program. Software components are one of the major factors that provide the software

reusability. As we all know that only that component will be beneficial for us if it has low

coupling and high cohesion. This is the main concept behind implementation. For the

representation of whole concept i am taking an example of four components.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 442

July
2012

This figure shows the bonding between four components: A, B, C and D. This also shows the

interaction between four components A, B, C and D:

1. A to B [Both directions]

2. A to C [Single direction]

3. A to D [Single direction]

4. B to D [Both directions]

5. D to C [Single directions]

Another concept which is very useful in this implementation is coupling. Coupling means

interconnections and interdependencies between two or more components. It means changes in

one component leads to changes in other components which is not a good sign as it makes the

software more complex and hence decreasing the quality of the software produced with the help

of these components. So, the software is supposed to be of good quality if the coupling between

its components is very low. This means low coupling leads to high quality.

Now out of above chosen four components we will use only that component which has least

coupling among all. The component with least coupling will increase the quality of the software

to the most. For this, we need to have coupling metrics. I found out coupling metrics between

these four components by using the formula:

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 443

July
2012

 Here, M is method and V is variable.

In the above table MVij Represents the Method respective to the instance of some class. Here Mi

represents the ith Method and Vj represents the jth Instance access in the program. II represents

the available number of incoming interactions and OI represents the available number of outgoing

interactions. The ratio of incoming and outgoing interactions is defined by II/OI

Result Achieved

When we execute all these values on the MATLAB we get a bar graph showing the coupling

metrics of each component:

Comp

onent M1j V1j A B C D IImax OImax E C II OI

i M1 V1

Mvij

1

Mvij

2

Mvij

1

Mvi

2

Mvij

1

Mvij

2

Mvij

1

Mvij

2

A 7 6 0 0 3 2 3 3 4 2 10 9 20 7 17

B 4 5 2 4 0 0 0 0 3 2 8 7 5 5 12

C 5 6 0 0 0 0 0 0 0 0 6 9 10 13 0

D 6 5 3 4 0 0 4 3 0 0 8 9 25 11 14

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 444

July
2012

According of the graph, increasing order of coupling metrics values of all the components are as

follows:

Component no. 3- 1
st

Component no. 2- 2
nd

Component no. 4- 3
rd

Component no. 1- 4
th

Component no. 3 has least value so it will be good choice if we recommend this component for

reuse because low coupling and high cohesion is recommended for software development. Till

now i have only done work till coupling, rest i will do after midterm.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 445

July
2012

Reason for using only these parameters: Since the name of my paper is about software quality.

The quality of a software depends on how and what kind of components we reuse in software

development. It means if the components we are going to reuse are of high quality and less

complex then ultimately the quality of the produced software will be of high quality. Now, in the

components the things which are common between them are methods, variables and functions

which mean the quality and complexity of a component is totally dependent on these parameters

and their sharing as well as interdependency. So the best way to find out the quality of the

components is to work on these parameters which i have done. With help of these parameters i am

able to find the coupling between the components.

Reason for using MATLAB: No doubt there are lots of tools and techniques available for

implementation but i prefer MATLAB. The need of a person for using a tool depends on his

requirements and according to my requirements i find MATLAB beneficial for me. There are also

other factors that compelled me to choose MATLAB:

1. It is very easy to use MATLAB for a beginner like me.

2. It simplifies the numerical calculations without writing the whole complicated and time

consuming program.

3. It graphs the result easily without complex programming.

4. MATLAB is flexible and platform independent.

With the help of MATLAB i am trying to show a bar graph. This bar graph represents the

coupling of all the four components which i have used. With the help of this bar graph it is very

easy even for a new user to find which component has high coupling and which has low. So, due

to this easy user interface i am using MATLAB for implementation.

Testing in implementation:

Testing is basically done to provide stakeholders with the information about the quality of the

product. But in my thesis testing will be required to authenticate the values i will use while

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 446

July
2012

implementation. Testing also provides an independent view of the software to apply modifications

and enhancing the quality, similarly in my thesis testing will provide me an independent view for

understanding the risks of implementation. Testing will be helpful in validating as well as

verifying the values of methods and variables used in the implementation. It will also prove to be

helpful in the following way:

1. If the shows that the values used will meet the requirements of the design and development.

2. If it shows the working of the values as expected.

3. If it ensures that these values can be implemented with same characteristics without any

changes.

=) Testing plays very important role while implementing the phases of thesis however it will be

more beneficial if we do testing while implementing the values of methods and variables. Testing

can never finds all the defects in the values but still it will be helpful in finding the wrong values

and also those values whose existence is under doubt.

=) The persons who will get benefit from my thesis are users. It means our target is defined i.e.

users; no other person will get direct benefit from our approach. So when our target is defined

then testing should also be done by considering the users point of view. We will do testing in such

a way that in future developer will not face problem which reusing software components. Now,

when we have defined values and defined target here starts the main working of testing which not

only helps in finding the defects but also helps in correcting them. Testing cannot confirm that the

product will work correctly under all conditions but it defines the condition under which the

product will not work properly. These conditions will be helpful for us in finding faulty values.

=) Since this is first phase of implementation that’s why i have taken values from a case study. I

have also chosen these values because i want to confirm what result it gives whether satisfactory

or not. But in future if required i will perform testing on assumed values. This will help in

defining the authentication of the values and also help in removing defected values.

Test Sequence- 1

1 Test Id: SR001

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 447

July
2012

2 Test Name: To test whether values of method and variables are correct or not.

3 Steps: First we take default values. Then run them on MATLAB to check they give

 Desired output or not.

4 Input: Default values

5 Expected output:

6 Actual output:

Comp

onent M1j V1j A B C D IImax OImax E C II OI

i M1 V1

Mvij

1

Mvij

2

Mvij

1

Mvi

2

Mvij

1

Mvij

2

Mvij

1

Mvij

2

A 7 6 0 0 3 2 3 3 4 2 10 9 20 7 17

B 4 5 2 4 0 0 0 0 3 2 8 7 5 5 12

C 5 6 0 0 0 0 0 0 0 0 6 9 10 13 0

D 6 5 3 4 0 0 4 3 0 0 8 9 25 11 14

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 448

July
2012

7 Remarks: Pass

Test Sequence- 2

1 Test Id: SR002

2 Test Name: To test whether values of method and variables are correct or not.

3 Steps: Firstly we change the values of component A. Then run them on MATLAB to

 Check whether they give desired output or not.

4 Input: Values with changes in component A.

Comp

onent M1j V1j A B C D IImax OImax E C II OI

i M1 V1

Mvij

1

Mvij

2

Mvij

1

Mvi

2

Mvij

1

Mvij

2

Mvij

1

Mvij

2

A 7 6 2 4 3 2 3 3 4 2 10 9 20 7 17

B 4 5 0 0 0 0 0 0 3 2 8 7 5 5 12

C 5 6 3 4 0 0 0 0 0 0 6 9 10 13 0

D 6 5 0 0 0 0 4 3 0 0 8 9 25 11 14

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 449

July
2012

5 Expected output:

6 Actual output:

7 Remarks: Fail

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 450

July
2012

Test Sequence- 3

1 Test Id: SR003

2 Test Name: To test whether values of method and variables are correct or not.

3 Steps: Firstly we change the values of component B. Then run them on MATLAB to

 Check whether they give desired output or not.

4 Input: Values with changes in component B.

5 Expected output:

Comp

onent M1j V1j A B C D IImax OImax E C II OI

i M1 V1

Mvij

1

Mvij

2

Mvij

1

Mvi

2

Mvij

1

Mvij

2

Mvij

1

Mvij

2

A 7 6 2 4 0 0 3 3 4 2 10 9 20 7 17

B 4 5 0 0 0 0 0 0 3 2 8 7 5 5 12

C 5 6 3 4 3 2 0 0 0 0 6 9 10 13 0

D 6 5 0 0 0 0 4 3 0 0 8 9 25 11 14

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 451

July
2012

6 Actual output:

7 Remarks: Fail

Test Sequence- 4

1 Test Id: SR004

2 Test Name: To test whether values of method and variables are correct or not.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 452

July
2012

3 Steps: Firstly we change the values of component C. Then run them on MATLAB to

 Check whether they give desired output or not.

4 Input: Values with changes in component C.

5 Expected output:

6 Actual output:

Comp

onent M1j V1j A B C D IImax OImax E C II OI

i M1 V1

Mvij

1

Mvij

2

Mvij

1

Mvi

2

Mvij

1

Mvij

2

Mvij

1

Mvij

2

A 7 6 2 4 0 0 0 0 4 2 10 9 20 7 17

B 4 5 0 0 0 0 3 3 3 2 8 7 5 5 12

C 5 6 3 4 3 2 4 4 0 0 6 9 10 13 0

D 6 5 0 0 0 0 0 0 0 0 8 9 25 11 14

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 453

July
2012

7 Remarks: Fail

Test Sequence- 5

1 Test Id: SR005

2 Test Name: To test whether values of method and variables are correct or not.

3 Steps: Firstly we change the values of component D. Then run them on MATLAB to

 Check whether they give desired output or not.

4 Input: Values with changes in component D.

Comp

onent M1j V1j A B C D IImax OImax E C II OI

i M1 V1

Mvij

1

Mvij

2

Mvij

1

Mvi

2

Mvij

1

Mvij

2

Mvij

1

Mvij

2

A 7 6 2 4 0 0 0 0 0 0 10 9 20 7 17

B 4 5 0 0 0 0 3 3 0 0 8 7 5 5 12

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 454

July
2012

5 Expected output:

6 Actual output:

7 Remarks: Fail

C 5 6 3 4 3 2 4 4 4 2 6 9 10 13 0

D 6 5 0 0 0 0 0 0 3 2 8 9 25 11 14

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 455

July
2012

Conclusion:

The proposed work is about to estimate the software quality using reusable software components.

Software components are one of the major factors that provide the software reusability. The

system will check that the use of the component based approach in the system is favorable to the

system or not which will recommend the quality of the software. The end result will show the bar

graph having quality of each component based on which developer can use the component which

will increase the quality of the software produced.

References:

[1] Jasmine K.S, Dr. R. Vasantha “A New Process Model for Reuse Based Software development

Approach” Proceedings of the World Congress on Engineering 2008 Vol IWCE 2008, July 2 -

4, 2008, London, U.K.

[2] Kyo C. Kang, Sholom Cohen, Robert Holibaugh, James Perry, A. Spencer Peterson, “A

Reuse-Based Software Development Methodology”, Software Engineering Institute Carnegie

Mellon University, Pittsburgh, Pennsylvania 15213.

[3]. Maurizio Pighin “A New Methodology for Component Reuse and Maintenance” University degli

Studi di Udine, Italy.

[4] Richard W. Selby, “Enabling Reuse-Based Software Development of Large-Scale Systems”,

Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278.

[5]. Jay F. Nunamaker, Jr.Minder Chen “Software Productivity: A Framework of Study and an

Approach to Reusable Components”, Department of Management Information Systems, The

University of Arizona Tucson, +Arizona 85721.

[6] Yoonsun Lim, Myung Kim, Seungnam Jeong and Anmo Jeong “A Reuse-Based Software

Development Method” Dept. of Computer Science & Engineering, Ehwa Womans

university,120-750 Seoul, Korea.

[7] William B. Frakes and Thomas P. Pole An Empirical Study of Representation Methods for

Reusable Software Components, IEEE transactions on software engineering, vol. 20, august

1994.

 IJMIE Volume 2, Issue 7 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

 456

July
2012

[8] Jo Woodison ,Managing Software Reuse with Perforce”, Mandarin Consulting.

[9] McClure, 1997a] Carma McClure, “Software Reuse Techniques”, Prentic-Hall, Inc., 1997.

[10] [Yu, 1991] D. Yu, "A view on Three R’s (3Rs): Reuse, Re-engineering, and Reverse Engineering,"

Software Engineering Notes, Vol. 16, No. 3, P. 69, July. 1991.

[11] [Feiler, 1993] P. H. Feiler, "Reengineering: an engineering problem," Software Engineering Institute,

Carnegie Mellon University: Special Report CMU_SEI-93-SR-5, July, 1993

[12] Ivan Jacobson, Martin Griss and Patrik Jonsson, Software Reuse-Architecture, Process and

Organization for Business Success, ACM Press,2000.

[13] Ian Somerville, Software Engineering, A practitioner’s approach, 6th Edition, Pearson

Education, 2001.

